Random gluing polygons

Sergei Chmutov joint work with Boris Pittel

Ohio State University, Mansfield

Stochastic Topology and Thermodynamic Limits Workshop at ICERM

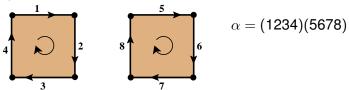
Wednesday, October 19, 2016 9:00 — 9:45 a.m.

Polygons. Notations.

n := # (oriented) polygons N := total (even) number of sides $n_j := # j\text{-gons}, \quad \sum n_j = n, \quad \sum jn_j = N$ $[N] := \{1, 2, ..., N\}$ $\alpha \in S_N$ is a permutation of [N] cyclically perm

 $\alpha \in S_N$ is a permutation of [N] cyclically permutes edges of polygons according to their orientations.

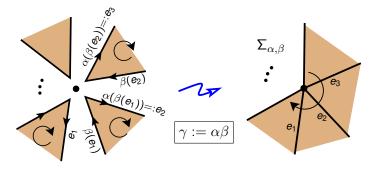
Example.



 n_j equals the number of cycles of α of length j.

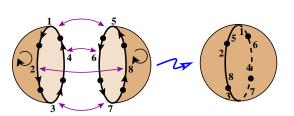
Gluing polygons. Permutations.

 $\beta \in S_N$ is an involution without fixed points; β has N/2 cycles of length 2.



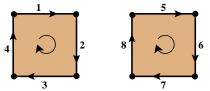
vertices of $\Sigma_{\alpha,\beta}$ = # cycles of γ . # connected components of $\Sigma_{\alpha,\beta}$ = # orbits of the subgroup generated by α and β .

Sergei Chmutov Random gluing polygons



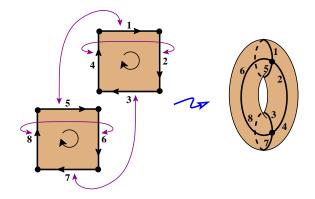
$$\beta = (15)(28)(37)(46)$$

 $\gamma = (16)(25)(38)(47)$



$$n = 2, N = 8, \qquad \alpha = (1234)(5678)$$

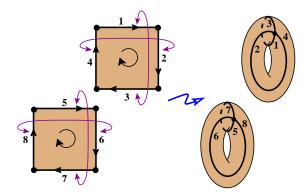
$$n = 2, N = 8, \qquad \alpha = (1234)(5678)$$



$$eta = (15)(24)(37)(68)$$

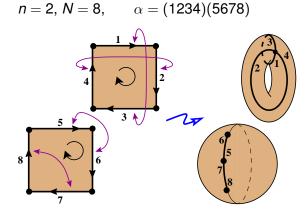
 $\gamma = (1652)(3874)$

$$n = 2, N = 8, \qquad \alpha = (1234)(5678)$$



$$eta = (13)(24)(57)(68)$$

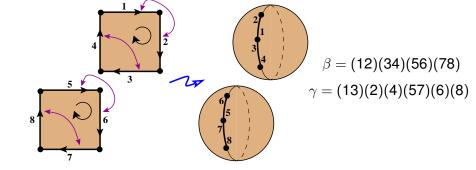
 $\gamma = (1432)(5876)$



$$eta = (13)(24)(56)(78)$$

 $\gamma = (1432)(57)(6)(8)$

Sergei Chmutov Random gluing polygons



$$n = 2, N = 8, \qquad \alpha = (1234)(5678)$$

$n = 2, N = 8, \quad \alpha = (1234)(5678)$ There are 7!! = 105 possibilities for choosing β .

surface $\Sigma_{\alpha,\beta}$	S^2	<i>T</i> ²	2 <i>T</i> ²	$T^2 + S^2$	2 <i>S</i> ²
# gluings	36	60	1	4	4

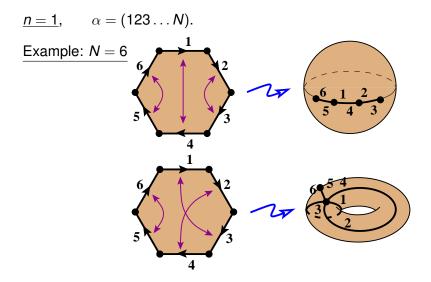
 $\mathbf{n} := \{n_j\}$ is a partition of $n = \sum n_j$.

Let C_n be the conjugacy class of α , all permutations in S_N with the cycle structure **n**.

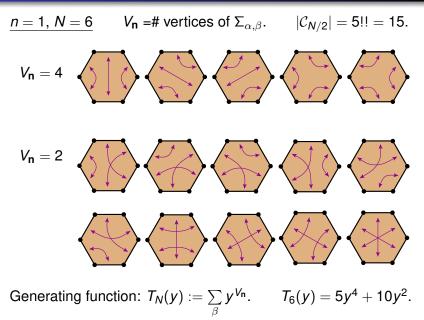
Let $C_{N/2}$ be the conjugacy class of β , all permutations in S_N with all cycles length 2.

A <u>random surface</u> is the surface $\Sigma_{\alpha,\beta}$ obtained by gluing according to the permutations α and β that are independently chosen uniformly at random from the conjugacy classes C_n and $C_{N/2}$ respectively.

Harer-Zagier formula. n = 1.



Harer-Zagier formula. n = 1, N = 6.



Harer-Zagier formula.

J. Harer and D. Zagier, *The Euler characteristic of the moduli space of curves*, Invent. Math. **85** (1986) 457–485.

$$T_N(y) := \sum_{\beta} y^{V_n}.$$

Generating function: $T(x, y) := 1 + 2xy + 2x \sum_{k=1}^{\infty} \frac{I_{2k}(y)}{(2k-1)!!} x^k$.

$$T(x,y) = \left(\frac{1+x}{1-x}\right)^y$$

—,B.Pittel, JCTA **120** (2013) 102–110: g_N = genus of $\Sigma_{\alpha,\beta}$. Asymptotically as $N \to \infty$, g_N is normal $\mathcal{N}((N - \log N)/2, (\log N)/4)$. —,B.Pittel, *On a surface formed by randomly gluing together polygonal discs*, Advances in Applied Mathematics, **73** (2016) 23–42.

 V_{n} =# vertices of $\Sigma_{\alpha,\beta}$.

Theorem. V_n is asymptotically normal with mean and variance $\log N$ both, $V_n \sim \mathcal{N}(\log N, \log N)$, as $N \to \infty$, and uniformly on **n**.

 $\mathsf{E}[V_{\mathsf{n}}] \sim \log n \qquad \mathsf{Var}(\chi) \sim \log n$

N. Pippenger, K. Schleich, *Topological characteristics of random triangulated surfaces*, Random Structures Algorithms, **28** (2006) 247–288.

All polygons are triangles.

• A. Gamburd, *Poisson-Dirichlet distribution for random Belyi surfaces*, Ann. Probability, **34** (2006) 1827–1848.

All polygons have the same number of sides, k. $2 \operatorname{lcm}(2, k) | kn$

 γ is asymptotically uniform on the alternating group A_{kn} .

Depending on the parities of permutations $\alpha \in C_n$ and $\beta \in C_{N/2}$ the permutation $\gamma = \alpha\beta$ is either even $\gamma \in A_N$ or odd $\gamma \in A_N^c := S_N - A_N$. The probability distribution of γ is asymptotically uniform (for $N \to \infty$ uniformly in **n**) on A_N or on A_N^c . Let P_γ be the probability distribution of γ and let U be the uniform probability measure on A_N or on A_N^c . Let $||P_\gamma - U|| := (1/2) \sum_{s \in S_N} |P_\gamma(s) - U(s)|$ be the total variation distance between P_γ and U.

Theorem. $||P_{\gamma} - U|| = O(N^{-1}).$

P. Diaconis, M. Shahshahani, *Generating a random permutation with random tranpositions*, Z. Wahr. Verw. Gebiete, **57** (1981) 159–179.

Using the Fourier analysis on finite groups and the Plancherel Theorem:

$$\|\boldsymbol{P} - \boldsymbol{U}\|^2 \leq \frac{1}{4} \sum_{\boldsymbol{\rho} \in \widehat{\boldsymbol{G}}, \, \boldsymbol{\rho} \neq \mathsf{id}} \dim(\boldsymbol{\rho}) \operatorname{tr}(\hat{\boldsymbol{P}}(\boldsymbol{\rho}) \hat{\boldsymbol{P}}(\boldsymbol{\rho})^*);$$

here \widehat{G} denotes the set of all irreducible representations ρ of G, "id" denotes the trivial representation, dim(ρ) is the dimension of ρ , and $\widehat{P}(\rho)$ is the matrix value of the Fourier transform of Pat ρ , $\widehat{P}(\rho) := \sum_{g \in G} \rho(g) P(g)$.

Ideas of the proof.

For $G = S_N$, the irreducible representations ρ are indexed by partitions $\lambda \vdash N$, $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ of *N*. Let $f^{\lambda} := \dim(\rho^{\lambda})$ (given by the hook length formula) and χ^{λ} be the character of ρ^{λ} .

$$\|\boldsymbol{P}_{\gamma} - \boldsymbol{U}\|^{2} \leq \frac{1}{4} \sum_{\lambda \neq (N), \, (1^{N})} \left(\frac{\chi^{\lambda}(\mathcal{C}_{\mathsf{n}}) \chi^{\lambda}(\mathcal{C}_{N/2})}{f^{\lambda}} \right)^{2}$$

Gamburd used estimate from S. V. Fomin, N. Lulov, *On the number of rim hook tableaux*, J. Math. Sciences, **87** (1997) 4118–4123, for N = kn,

$$|\chi^{\lambda}(\mathcal{C}_{N/k})| = O(N^{1/2 - 1/(2k)})(f^{\lambda})^{1/k}.$$

M. Larsen, A. Shalev, *Characters of symmetric groups: sharp bounds and applications*, Invent. Math., **174** (2008) 645–687. Extension of the Fomin-Lulov bound for all permutations σ without cycles of length below *m*, and partitions λ :

$$|\chi^{\lambda}(\sigma)| \leq (f^{\lambda})^{1/m+o(1)}, \quad N \to \infty.$$

$$\|P_{\gamma}-U\|^2=O(N^{-2}).$$

THANK YOU!